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Background: Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of
phosphatidylcholine.
Results: Plant LPCATs were expressed in yeast and biochemically characterized.
Conclusion: LPCATs can edit acyl composition of phosphatidylcholine through their combined forward and reverse reactions.
Significance: Plant LPCATs play a role in editing both sn-positions of PC and remove ricinoleic acid with high selectivity from
this lipid.

Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT)
enzymes have central roles in acyl editing of phosphatidylcho-
line (PC). Plant LPCAT genes were expressed in yeast and char-
acterized biochemically inmicrosomal preparations of the cells.
Specificities for different acyl-CoAs were similar for seven
LPCATs from five different species, including species accumu-
lating hydroxylated acyl groups in their seed oil, with a prefer-
ence for C18-unsaturated acyl-CoA and low activity with palmi-
toyl-CoA and ricinoleoyl (12-hydroxyoctadec-9-enoyl)-CoA.
We showed that Arabidopsis LPCAT1 and LPCAT2 enzymes
catalyzed the acylation and de-acylation of both sn positions of
PC, with a preference for the sn-2 position. When acyl specific-
ities of the Arabidopsis LPCATs were measured in the reverse
reaction, sn-2-bound oleoyl, linoleoyl, and linolenoyl groups
from PC were transferred to acyl-CoA to a similar extent. How-
ever, a ricinoleoyl group at the sn-2-position of PCwas removed
4–6-fold faster than an oleoyl group in the reverse reaction,

despite poor utilization in the forward reaction. The data pre-
sented, taken together with earlier published reports on in vivo
lipid metabolism, support the hypothesis that plant LPCAT
enzymes play an important role in regulating the acyl-CoA com-
position in plant cells by transferring polyunsaturated and
hydroxy fatty acids produced on PC directly to the acyl-CoA
pool for further metabolism or catabolism.

Plants differ from most other eukaryotes, including animals,
in that they synthesize polyunsaturated fatty acids fromprecur-
sor fatty acids that are esterified to a complex glycerolipid. In
the plastids, the preferred lipid substrate for desaturation is
monogalactosyldiacylglycerol, and in the cytosol it is phos-
phatidylcholine (PC)3 (1). The polyunsaturated fatty acids
formed on PC are distributed in all cytosolic lipid classes in the
plant cell, including the triacylglycerols (TAGs) that accumu-
late in massive amounts in oil-storing tissues. This necessitates
an efficient mechanisms whereby the monounsaturated fatty
acid, i.e. oleic acid (18:1cis�9), is channeled into PC for further
desaturation, and the resulting polyunsaturated fatty acids,
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mainly linoleic (18:2cis�9,12) and �-linolenic (18:3cis�9,12,15)
acids, are channeled to other lipids. It has been shown that PC
also is the substrate for the biosynthesis of a number of unusual
fatty acids in plants, such as hydroxy-, epoxy-, acetylenic, and
conjugated fatty acids. These fatty acids are formed by the cat-
alytic action of �12-desaturase-like (FAD2) enzymes (2). Some
plants accumulate unusual fatty acids to a very high percentage
in the TAGs while maintaining very low levels in seed PC, their
site of synthesis (3, 4). Thus, in the case of these unusual fatty
acids, the cell does not only need an efficient mechanism of
channeling them fromPC toTAGbut also themechanisms that
remove them from PC with high selectivity.
In animal cells, the turnover of acyl groups in PC is believed

to be accomplished by phospholipase-catalyzed release of
free fatty acid forming lysophosphatidylcholine (LPC). LPC
is subsequently reacylated utilizing acyl-CoA via the catalytic
action of an acyl-CoA:lysophosphatidylcholine acyltransferase
(LPCAT, EC 2.3.1.23) in the so-called Lands cycle (5). This
cycle has also been suggested to be involved in the channeling of
ricinoleic acid (12-hydroxyoctadec-9-enoic acid), vernolic acid
(12-epoxyoctadec-9-enoic acid), and crepenynic acid from PC
to TAG in plants (6–8).
It has been shown that there is a rapid interconversion

between diacylglycerols (DAG) and PC during TAG synthesis
in some oil seeds (9, 10). This interconversion was originally
suggested to be catalyzed by the reverse and forward reaction
of the CDP-choline:diacylglycerol cholinephosphotransferase
(11), but recently a novel enzyme was identified, phosphatidyl-
choline:diacylglycerol cholinephosphotransferase (PDCT) that
could efficiently carry out this reaction in Arabidopsis seeds
(12). Other routes of transfer of acyl groups from PC to TAGs
and steryl esters in plants are catalyzed by phospholipid:diacyl-
glycerol acyltransferase (PDAT) and phospholipid:sterol acyl-
transferase, respectively (13, 14).
An acyl exchange between PC and acyl-CoA was demon-

strated in microsomal preparations from developing soybean
over 30 years ago (15). A few years later, in experiments with
microsomal preparations from developing safflower seeds, it
was suggested that this exchange was catalyzed by the com-
bined forward and reverse reaction of an LPCAT enzyme (16).
However, it was not until recently that the plant LPCAT genes
were cloned (17), and this hypothesis could be more rigorously
tested. In thework reported here, we confirm that plant LPCAT
enzymes can operate in a reversible fashion in vitro. Our exper-
iments also support the hypothesis that LPCATs play a signifi-
cant role in vivo in the exchange of acyl groups between acyl-
CoA and PC pools. We also show that, unexpectedly, LPCAT
can have an important role in specifically removing unusual
fatty acids formed on PC. Furthermore, we report on the posi-
tional specificities, acyl specificities, and selectivities of plant
LPCAT enzymes.

EXPERIMENTAL PROCEDURES

Chemicals—[1-14C]18:1 and [1-14C]palmitoleic acid (16:0)
were purchased from PerkinElmer Life Sciences. [1-14C]
Ricinoleic acid was obtained from American Radiochemicals.
Nonradioactive fatty acids, free CoA, sn-1–18:1-LPC and sn-1–
16:0-LPC, fatty acid methyl ester, and fatty alcohol standards

were obtained from Larodan (Malmö, Sweden). Acyl-CoAs
were prepared according to themethoddescribed by Sánchez et
al. (18). Molecular species of sn-1–16:0-sn-2-[14C]acyl-PC and
[14C]18:1-LPCwere prepared by acylation of the trifluoroacetic
anhydride of the radioactive fatty acid to sn-1–16:0-LPC and
glycero-sn-3-phosphorylcholine (Sigma), respectively, accord-
ing to Ref. 19. sn-1–16:0-sn-2-[14C]ricinoleoyl-PC was pre-
pared by incubating microsomes from yeast expressing the
AtLPCAT2 with [14C]ricinoleoyl-CoA as in assays for forward
reaction of LPCATs as described under “EnzymeAssays” for 30
min with nonradioactive 16:0-LPC and [14C]ricinoleoyl-CoA.
GC analysis of methylated fatty acids (see under “Lipid Extrac-
tion, Separation, and Analysis”) from the purified PC showed
that 80% of the PC species consisted of sn-1–16:0-sn-2-ricino-
leoyl-PC. l-O-9-cis-Octadecenyl-sn-glycero-3-phosphocholine
(sn-1-OGPC) and 2-O-(9-cis-octadecenyl)-sn-glycero-3-phos-
phocholine (sn-2-OGPC) were synthesized as described previ-
ously (20). Ricinoleoyl-LPCwas produced by phospholipase A2
(fromNaja naja, Sigma) treatment of di-ricinoleoyl-PC (kindly
provided by ENI/Metapontum Agrobios, Metaponto, Italy)
according to Ref. 6.
Yeast Strains and Plasmids—The Saccharomyces cerevisiae

haploid knock-out mutant of ALE1:(BY4741; Mata; his3�1;
leu2�0; lys2�0; ura3�0; YOR175c::kanMX4) was used as host
strain for the expression of the LPCAT enzymes. Two variants
of the plasmid pYES (Invitrogen) were used for expressing the
LPCATs in yeast under the control of the GAL1 promoter.
AtLPCAT1 (At1g12640), AtLPCAT2 (At1g63050), LfLPCAT2,
McLPCAT, and AfLPCAT were expressed in pYES2,
whereas CtLPCAT, RcLPCAT, BpLPCATs, and HbLPCATs
were expressed in pYES-DEST52. The LPCAT sequences
were confirmed by sequencing and introduced into the yeast
strain ale1. An empty vector pYES2 was used as a control in
the experiments.
Yeast Cultivation and Microsomal Preparations—Recombi-

nant yeast cells were grown at 30 °C in synthetic uracil drop-out
medium containing 2% galactose. After 24 h, yeast cells were
harvested, washed with 20 mM Tris-HCl, pH 7.9, and resus-
pended in extraction buffer (20 mM Tris-HCl, pH 7.9, 10 mM

MgCl2, 1mMEDTA, 5% (v/v) glycerol, 1mMDTT, 0.3 M ammo-
nium sulfate) containing protease inhibitor (Complete, Roche
Applied Science). The cells were disrupted by homogenization
with 0.5-mm zirconia/silica beads using a Mini Beadbeater-8
(Biospec Products). The homogenates were centrifuged at
1,500 � g, and supernatants were transferred to new tubes,
diluted with extraction buffer, and centrifuged 100,000 � g for
2 h at 4 °C. The pellets were resuspended in 0.1 M potassium
phosphate, pH 7.2, and these extracts, subsequently referred to
as microsomal membranes or microsomes, were stored at
�80 °C.
Enzyme Assays—The enzyme assays were performed with

microsomal membranes prepared from ale1 yeast expressing
an LPCAT gene. Control microsomes were prepared from ale1
yeast transformed with empty vector. Assays for measuring the
forward reaction of the LPCATs contained 10 nmol of acyl-
acceptor (18:1-LPC/1-OGPC/2-OGPC), 5 nmol of acyl-CoA (if
single substrate assays, otherwise 10 nmol of total acyl-CoA),
0.1 M potassium phosphate buffer, pH 7.2, in a total volume of
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50 �l. 14C-Labeled fatty acids were either in the LPC or in the
acyl-CoA substrate, depending on the experiment, as indicated
in the table or figure legends. The amount of microsomes opti-
mized to assay under linear conditions varied from 0.1 to 0.8�g
of microsomal protein. Acylation of positional isomers of
OGPC and LPC was performed with 0.5 and 5 �g of micro-
somal protein in assays without and with fatty acid-free bovine
serum albumin (BSA) (20mg/ml). The reaction time was 4min
at 30 °C. LPCAT-specific activity measured in different micro-
somal preparations from yeast with the same LPCAT gene
expressed could differ by up to 50%. Assays measuring the
reverse reaction and acyl exchange contained 43 �g of micro-
somal proteins, 200 nmol of free CoA, and 1mg of BSA in 0.1 M

potassium phosphate buffer, pH 7.2, in final volume of 100 �l.
In some of the assays, dithionitrobenzoic acid (DTNB) was
added at concentrations as stated in the figure texts. When
[14C]PC species were used as substrate for the reverse reaction,
sn-1–16:0-sn-2[14C]acyl-PC (9 nmol or, in case of mixed sub-
strate, 4.5 nmol of each PC species) was added to freeze-dried
microsomes in benzene according to the method described
previously (21). Phosphate buffer, pH 7.2, was then added
together with BSA, CoA, and 10 nmol of 18:1-CoA, and the
assays were incubated 60 min at 30 °C.
To investigate if pre-existing LPC in the microsomal mem-

branes would influence the results of the assays, we measured
the LPC concentration in two microsomal preparations with
LPCAT expressed (AtLPCAT1 and RcLPCAT) in triplicate
samples. The amount of LPC varied in the two preparations
between 23 and 58 nmol per mg of microsomal protein. In
assays with LPC added, the endogenous LPC constituted about
0.06 to 3% of added LPC and would thus not significantly influ-
ence the assay results. To estimate the amount of endogenous
acyl-CoA, we incubated microsomes (5 �g of microsomal pro-
tein) for 4 min with [14C]18:1-LPC without addition of acyl-
CoA and measured the incorporation into PC. Because yeast
microsomes contain lysophospholipases that also have lyso-
phospholipid transacylase activity and thus are able to produce
PC (22), we incubated microsomes with two different LPCATs
expressed (AtLPCAT1 and RcLPCAT) and compared the
results with incubations of microsomes of ale1 strain trans-
formed with empty vector. Radioactive PC in the latter incuba-
tion was regarded to be formed only by the endogenous lyso-
phospholipase/transacylase and the former by the combined
action of endogenous phospholipase and LPCAT utilizing
endogenous acyl-CoA. The vector control and LPCAT-ex-
pressing membranes produced 0.15 � 0.03 nmol of PC and
0.2� 0.16 nmol per assay, respectively. It can be estimated from
these figures that the dilution of added acyl-CoA by endoge-
nous acyl-CoA in the assays would be in the range of 0.05–1%
and would thus not significantly influence the obtained results.
Lipid Extraction, Separation, and Analysis—The micro-

somal assays were terminated by addition of 170 �l (in case of
50-�l assay volume) or 100 �l (in case of 100-�l assays) of 0.15
M acetic acid and 500 �l of chloroform/methanol (1:1, v/v) and
vortexed. After centrifugation, the lower (chloroform) layer
was removed, and an aliquot was taken to liquid scintillation
counting of the radioactivity. The rest of the lower phase was
applied on silica thin layer chromatography (TLC) plate (Silica

60, Merck), and the plate was developed in polar solvent, chlo-
roform/methanol/acetic acid/water (90:15:10:3, v/v/v.). Radio-
active spots were visualized and identified by Rf values of
authentic standards, and the relative amount of radioactivity in
each spot was determined by InstantImager (Packard Instru-
ment Co.) electronic autoradiograph. Absolute amounts of
radioactivity in each spot were calculated from the total
amount of radioactivity in the chloroform phase as determined
by liquid scintillation. In assays with positional isomers of
OGPC and LPC and measuring acyl substrate selectivity, 18
assays were pooled before TLC. PC was recovered from the
plate andmethylated.Methyl esterswere analyzed either byGC
analysis as described under “Fatty Acid Analysis” (in case of
assays with nonradioactive acyl-CoAs) or by argentation TLC
(hexane/diethyl ether/acetic acid; 70:30:1, v/v/v) and subse-
quent determination of distribution of radioactivity between
acyl groups with InstantImager.
When assays were done with BSA (reverse reaction), all the

acyl-CoA partitioned in the upper phase with a majority bound
to denatured BSA protein (23). After removing the chloroform
phase, the upper phasewas thoroughlywashed three timeswith
2.5 ml of chloroform. 0.5 ml of 4 M KOH was added to the
washed upper phase, and the solutionwas heated at 90 °C for 15
min to hydrolyze the acyl-CoA. After acidification with HCl,
the free fatty acids were extracted into chloroform by adding
chloroform/methanol according to the proportions devised by
Bligh and Dyer (24). The amount of 14C-labeled free fatty acids
in the chloroform phase was determined by liquid scintillation
andwas regarded as the total radioactivity in the acyl-CoA frac-
tion. No significant radioactivity was found in this phase in
incubation with control microsomes. In assays with mixed
[14C]18:1-PC and [14C]ricinoleoyl-PC species, 14C-labeled free
fatty acids were separated on silica TLC plates in PC hexane/
diethyl ether/acetic acid (50:50:1, v/v/v). In assays with mixed
[14C]18:1-PC, [14C]18:2-PC, and [14C]18:3-PC, the fatty acids
weremethylated (see below) and separated on argentation TLC
plates in hexane/diethyl ether/acetic acid (85:15:1, v/v/v) The
relative amount of radioactivity in each fatty acids was quanti-
fied by electronic autoradiography using InstantImager.
Analysis of radioactivities at the different sn positions of

[14C]PC isolated after assays with [14C]acyl-CoA under condi-
tions promoting acyl exchange was performed by phospho-
lipase A2 (from N. naja, Sigma) hydrolysis according to Ref. 6.
The products from hydrolysis were separated in the polar TLC
system as described above, and the relative radioactivity in
[14C]LPC and [14C]free fatty acids was determined by Instant
Imager.
Fatty Acid Analysis—Free fatty acids and acyl groups of acyl-

CoAs and lipids were analyzed and quantified by GC analysis
after conversion to correspondingmethyl esters by heating in 2
ml of 2%H2SO4 inwater-freemethanol in capped tubes at 90 °C
for 30 min. The methyl esters were then extracted into hexane
by adding hexane (2 ml) and water (2 ml). GC analysis of fatty
acid methyl esters was performed on a CP-wax 58 (FFAP-CB)
column using a Shimadzu gas chromatograph. Helium was
used as carrier gas at a column flow rate of 7.7 ml/min. The
injection and detector temperatures were 230 and 270 °C,
respectively. Initial temperature was set at 100 °C, and the tem-
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peraturewas raised at a rate of 15 °C/min up to 160 °C, and then
10 °C/min up to 250 °C, and held at 250 °C for 20 min. The
identification of fatty acid methyl esters were performed by
comparing the retention timeswith authentic standards.Quan-
tification of fatty acid methyl esters was done by addition of
heptadecanoic acid methyl esters as internal standard.

RESULTS

Reversibility of LPCAT-catalyzed Reactions—The forward
reaction of LPCAT, i.e. the acylation of LPC to form PC by the
use of acyl-CoA, involves the breaking of a thioester bond and
forming an oxygen ester. This is a strongly exothermic reaction,
and thus equilibrium of the LPCAT reaction favors the forma-
tion of PC. To have a relevant physiological activity in the cell in
the reverse reaction, the catalytic activity of the LPCATenzyme
or the amount of enzyme present has to be very high. In addi-
tion, the pool sizes of the substrates for the forward reaction
have to be much smaller than for the reverse reaction. We
expressed Arabidopsis LPCAT2 (AtLPCAT2) in a yeast strain
bearing amutation in the endogenous LPCAT gene (ALE1) and
measured LPCAT activity in the forward reaction in micro-
somal preparations by adding LPC and [14C]18:1-CoA under
optimized conditions (Fig. 1A). The reaction was linear for at
least 10 min with a specific activity of about 1 �mol/min/mg of
protein. LPCAT activity in incubations with microsomes from
ale1 yeast transformed with empty vector as control was less

than one-tenth of the activity inmicrosomeswith the expressed
LPCAT2 (Fig. 1A).
DTNB is an effective scavenger of sulfhydryl groups and thus

of free CoA. Because free CoA is necessary for the reverse reac-
tion of LPCAT,DTNB is expected to block this reaction. DTNB
additions up to 5 mM had only a slight inhibitory effect on the
forward reaction of LPCAT (Fig. 1A). Previous in vitro experi-
ments showed that addition of BSA is essential for the revers-
ibility of LPCAT and that BSA can be replaced by a Brassica
napus acyl-CoA-binding protein (ACBP) (16, 25). However,
addition of excess of BSA strongly inhibits the forward reaction
(16). The most plausible explanation for these effects is that
acyl-CoA bound to BSA or ACBP cannot be utilized by the
LPCAT enzyme. Therefore, the presence of BSA or ACBP
effectively lowers the pool size of acyl-CoA available for the
forward reaction of the enzyme and thus favors the reverse
reaction. To assess the rate of the reverse reaction of
AtLPCAT2 under conditions that would favor this direction,
we incubated the microsomes from yeast expressing
AtLPCAT2with [14C]18:1-CoA in the presence of BSA and free
CoA but in the absence of added LPC (Fig. 1B). The rationale
behind this experiment is that any endogenous LPC will effec-
tively be acylated in the forward reaction catalyzed by LPCAT.
Further generation of LPC can therefore only be achieved by
the reverse reaction of LPCAT or by endogenous yeast phos-
pholipases. The generated LPC will be rapidly acylated by the
forward reaction of LPCAT. In thisway, incorporation of radio-
activity from [14C]18:1-CoA into PC will continue until an
equilibrium between acyl groups in PC and acyl-CoA is
achieved or the acyl-CoA is depleted due to hydrolysis by
endogenous yeast enzymes (Fig. 2).
The incorporation of [14C]18:1-CoA into PC under these

assay conditions was essentially linear for the first 10 min with
an incorporation rate of about 3.5 nmol/min/mg of protein and
continued at a reduced rate up to at least 30 min (Fig. 1B).
Addition of DTNB caused about 80% inhibition of the incorpo-
ration measured after 10 min of incubation; the incorporation
ratewas then 0.7 nmol/min/mgof protein (Fig. 1B). Because the
acylation rate in the presence of DTNB is likely to represent
acylation of pre-existing LPC and formation of LPC by endog-
enous enzymes (i.e. phospholipases), the actual acyl exchange
rate can be calculated as 3.5–0.7 � 2.8 nmol/min/mg of pro-
tein. Although this represents only 0.3% of the optimal forward
rate (Fig. 1A), it is in the samemagnitude of rate asmeasured for
the forward reaction of other microsomal acyl-CoA acyltrans-
ferases expressed in yeast (26, 27). It should be noted that incor-
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FIGURE 1. Time course of [14C]18:1 incorporation from [14C]18:1-CoA into
PC in microsomal preparations of the ale1 yeast strain expressing
AtLPCAT2. A, incorporation of [14C]18:1 into PC in the presence of added LPC
(forward reaction). B, incorporation of [14C]18:1 into PC in the absence of LPC
with added BSA and free CoA (incorporation via acyl exchange). Incubation
conditions as assays for forward reaction (A) and reverse reaction without
addition of LPC (B) (see “Experimental Procedures”) are shown. The DTNB
concentration was 5 mM. Assays were performed in duplicate, and error bars
are given � S.D.

FIGURE 2. Reactions catalyzed by LPCAT. The acylation of acyl groups from
PC to CoA is favored by high concentrations of PC and CoA and low concen-
trations of LPC and acyl-CoA. By adding free CoA and binding acyl-CoA to BSA
in the microsomal assays, the equilibrium of the reaction is shifted toward the
reverse reaction. The LPC concentration will be maintained low in the assays
by the reacylation of the LPC formed by the backward reaction by the forward
reaction of the LPCAT enzyme.
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poration of radioactivity into PC in control microsomes pre-
pared from yeast carrying the empty plasmid was just above the
detection limit (Fig. 1B), demonstrating that no enzyme other
than AtLPCAT2 was present that could efficiently catalyze the
incorporation of acyl groups into PC by acyl exchange.
Acyl Specificities of LPCATs in Forward and Reverse Reaction—

An acyltransferase may be expected to have the same specific-
ities in the reverse reaction as it has in the forward reaction.
However, acyl-CoA (forward reaction) and PC (reverse reac-
tion) are acyl donors with significant differences in structure
and acyl bond stability, which may affect their presentation,
affinity, and turnover by the LPCAT enzyme. In the reverse
reaction, the membrane-bound enzyme is embedded in its acyl
donors, which represent components of thismembrane. There-
fore, the accessibility/reactivity of the surrounding PCmolecu-
lar species could be quite different comparedwith the acyl-CoA
species presented to the enzyme.
We first studied the acyl specificities in the forward reaction

of AtLPCAT1 and AtLPCAT2 in microsomes of the ale1 yeast
expressing the genes encoding these enzymes. The specificities
were compared with the selectivity by presenting the enzymes
to amixture of acyl-CoAs.We also included ricinoleoyl-CoA in
our assays even though ricinoleic acid is normally not produced
inArabidopsis. The reason for thiswas to determine the activity
ofArabidopsisLPCATs for this unusual fatty acid as it is formed
on PC, and production has previously been engineered in Ara-
bidopsis by the ectopic expression of a �12-hydroxylase gene
(28–31).
Both LPCATs had low activities with palmitoyl- and ricino-

leoyl-CoA when these acyl-CoAs were presented as single sub-
strates. Thioesters of the common unsaturated C18 fatty acids,
18:1, 18:2, and 18:3, were acylated at about the same rate by the
catalytic action of LPCAT1, whereas LPCAT2 showed rela-
tively lower activity with 18:1-CoA than with 18:2-CoA (Fig.
3A). The specific activity of LPCAT1 was 15–20% of the
LPCAT2 activity, but differences in actual expression levels of
both enzymeswere not determined. It should also be noted that
the specific activity of the same LPCAT could vary up to 50%
between different microsomal preparations (see under “Exper-
imental Procedures”). We then measured relative incorpora-
tion from an equimolar mixture of 18:1-CoA, 18:2-CoA, 18:3-
CoA, and ricinoleoyl-CoA (Fig. 3B). The relative incorporation
of ricinoleoyl groups into PC was small in assays with either
enzyme. Both enzymes catalyzed the incorporation of all the
other acyl groups in roughly the same proportions.
To measure the acyl specificity in the reverse reaction, we

presented sn-2-14C-labeled 18:1-, 18:2-, and 18:3-PC to the
membrane as single substrates and assayed under conditions
favoring the reverse reaction. In these assays, we added an unla-
beled 18:1-CoA to trap the [14C]acyl-CoA formed from
[14C]PC in the acyl-CoA pool. Thus, any LPC formed by the
reverse reaction of LPCATwould be acylatedmainly with unla-
beled 18:1-CoA, whereas the acyl groups removed from PC
would be mainly found as acyl-CoA. We then determined the
[14C]acyl amount and distribution in the acyl-CoA fraction.
Both enzymes transferred 18:1 and 18:3 acyl groups from PC to
acyl-CoAat similar rates, with 18:2 being utilized at a somewhat
lower rate (Fig. 3C). It can be noted that the amounts of acyl

groups found in the acyl-CoA fraction were virtually the same
for both LPCATs, although the forward activity of LPCAT2was
about five times higher than that of LPCAT1 with these acyl
groups (Fig. 3A).
Positional Specificities of the Arabidopsis LPCATs—To deter-

mine the positional specificities of the Arabidopsis LPCAT, we
used ether analogs of 18:1-LPC, l-O-9-cis-octadecenyl-sn-
glycero-3-phosphocholine (sn-1-OGPC), and 2-O-(9-cis-octa-
decenyl)-sn-glycero-3-phosphocholine (sn-2-OGPC), as acyl
acceptors. This was done because sn-2-LPC is unstable, and
acyl groups will rapidly migrate to the sn-1 position. It was
previously shown that microsomal preparations of developing
sunflower seeds can acylate both these ether analogs with acyl-
CoA (20). Similar specificities and rates of acylation as with
sn-1-LPC were found with the sn-1-OGPC, with 16:0-CoA

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

Ph
os

ph
at

id
yl

ch
ol

in
e 

fo
rm

ed
  

(n
m

ol
/m

in
/m

g 
pr

ot
ei

n)
 

16:0-CoA 

18:1-CoA 

18:2-CoA 

18:3-CoA 

ric-CoA 

A 

0 

10 

20 

30 

40 

50 

A
cy

l g
ro

up
s 

ac
yl

at
ed

 in
 P

C 
 (m

ol
%

) 

B 

C 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

AtLPCAT1 AtLPCAT2 

[14
C]

ac
yl

-C
oA

 fo
rm

ed
  

(n
m

ol
) 

* * * 

* 

* 

* 
* 

* * 

FIGURE 3. Acyl substrate specificities and selectivities of AtLPCAT1 and
AtLPCAT2. A, acyl specificities in the forward reaction. Acyl-CoA substrates
were provided as single substrates with added [14C]18:1-LPC. B, acyl selectiv-
ities in the forward reaction. Acyl-CoA substrates (18:1-, 18:2-, 18:3-, and
ricinoleoyl-CoA) were provided as an equimolar mixture with [14C]18:1-LPC.
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different [14C] acyl groups trapped in the acyl-CoA fraction (see “Experimental
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being a very poor substrate (Table 1). Although both sn-1 and
sn-2 ether homologs of LPC were acylated by the catalytic
action of both LPCAT1 and LPCAT2, the rate of acylation was
6–7 times higher with the sn-1 substrate than with sn-2 sub-
stratewhen 18:1-CoAwas used as an acyl donor (Table 1).With
16:0-CoAas a substrate, the acylation ratewith sn-1-OGPCwas
about 3–5-fold that of the sn-2-OGPC. Addition of BSA to the
assays with [14C]18:1-CoA led to a 20–30-fold decrease in acyl-
ation rate of sn-1-LPC and sn-1-OGPC but only to a 5-fold
decreasewith sn-2-OGPC. BSAhad little effect on the acylation
rate of 16:0with all the acyl acceptors, giving an acylation rate of
sn-1-OGPC that was about two times that of the sn-2-OGPC
(Table 1).
Because saturated fatty acids, like 16:0, are nearly exclusively

found at the sn-1 position of plant phospholipids, we investi-
gated if the LPCAT selected 16:0-CoA at a higher degree in the
acylation of the sn-1 position when an equimolar mixture of
16:0-CoA and 18:1-CoA was presented to the enzyme. How-
ever, 16:0 was strongly selected against in acylation of the sn-2
ether analog of LPC by both AtLPCATs, regardless if BSA was
added or not in the assays (Table 1).
To kinetically explain the effects of BSA addition on the acyl-

ation of the positional OGPC isomers with 18:1-CoA as acyl
donor (Table 1), apparent Km values for 18:1-CoA were deter-
mined for LPCAT1 using LPC, 1-OGPC and 2-OGPC as acyl
acceptors. The Vmax and Km values for 18:1 using LPC or
1-OGPCwere virtually identical (Fig. 4). However, theKm value
for 18:1-CoA in the acylation of sn-2-OGPCwas 4.5 times lower
than measured for the sn-1 isomer (Fig. 4). Thus, the higher

ratio of sn-1 to sn-2 acylation of OGPC seen when BSA was
added (Table 1) canmost easily be explained by the assumption
that acyl-CoA bound to BSA is unavailable for the enzyme. A
decrease in the acyl-CoA substrate concentrationwill affect the
rate of acylation of sn-2-OGPC less than the rate of sn-1-OGPC
acylation. Attempts to determine kinetic parameters for acyl-
CoA with LPCAT2 failed because we could not obtain reaction
conditions that followed the Michaelis-Menten kinetics (data
not shown).
The above data indicate that the LPCATs could have signif-

icant capacity to acylate the sn-1 position of LPC.We therefore
investigated how much of the acyl groups from 16:0-CoA and
18:1-CoA was incorporated onto the different sn positions of
PC in the absence of added LPC under conditions that pro-
moted acyl exchange. Here, the incorporation at the different
positions will largely be determined by the positional specificity
of the rate-limiting step, i.e. the removal of acyl groups fromPC
in forming LPC, the substrate for the forward reaction. The
proportion of label found at the sn-1 position ranged from
4.6 to 16.4%, and the proportion was significantly lower with
16:0-CoA than with 18:1-CoA substrates in assays with both
AtLPCATs (Fig. 5).
In summary, it can be concluded from these experiments that

LPCAT can both transfer and remove fatty acids to and from
the sn-1 position of PC. The acylation and de-acylation rates of
that position are substantially lower than for the sn-2 position
under most assay conditions used, and 16:0 is strongly selected
against in competition assays with 18:1 in acylation of either
position.

TABLE 1
Positional specificities (A) and selectivities (B) of the Arabidopsis LPCATs
A, shown are assays with single [14C]acyl-CoA substrates. B, shown are assays with an equimolar mixture of [14C]16:0-CoA and [14C]18:1-CoA. The abbreviations used are
as follows: sn-1-OGPC, ether analog of sn-1-LPC; sn-2-OGPC, sn-2 ether analog of sn-2-LPC; LPC, sn-1-18:1-LPC. The assays were donewith incubation conditions for the
forward reaction (see under “Experimental Procedures”). The data are from duplicates � S.D.
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Reverse Reaction of LPCAT with Ricinoleoyl-PC and Oleoyl-
PC as Acyl Donors—We measured the reverse reaction of the
AtLPCAT2 with an equimolar mixture of sn-2-[14C]18:1-PC
and sn-2-[14C]ricinoleoyl-PC presented to the microsomal
membranes under the conditions that promoted acyl exchange
and trapped the formed radioactive acyl-CoA by adding large
amounts of unlabeled 18:1-CoA. In this experiment, we also
analyzed the 14C distribution in different lipid classes in the
chloroform fraction after the assays. The acyl-CoA fractionwas
dominated by [14C]18:1 with only traces of [14C]ricinoleate
found (Fig. 6). However, the chloroform fraction contained,
unexpectedly, about four times more free [14C]ricinoleic acid
than the sum of [14C]18:1 free fatty acid and [14C]18:1-CoA
(Fig. 6). Omission of added free CoA lowered the amount of
radioactivity found in free fatty acid and acyl-CoAby about 50%

but did not change the ratio between radioactive oleic and ric-
inoleic acids in these lipid classes (Fig. 6). It should be noted that
some free CoA, which is essential for the reverse reaction (Fig.
1B), was formed during these conditions due to the endogenous
acyl-CoA thioesterase activity in the yeast membranes. To
investigate if the formation of free ricinoleic acid was depen-
ding on the availability of free CoA, the assays were repeated
with addition of DTNB. Only traces of radioactivity were found
in free fatty acids and in the acyl-CoA fraction in the presence of
this free CoA scavenger (Fig. 6). The results clearly showed that
the formation of free ricinoleic acid was dependent on free
CoA.Thus, themost likely explanation of the obtained results is
that ricinoleoyl-CoA is formed by the reverse reaction of the
LPCAT with free CoA and then rapidly and specifically
hydrolyzed to free fatty acids after its formation. The main
reactions in the metabolism of the mixture of ricinoleoyl-PC
and oleoyl-PC with expressed LPCAT in yeast microsomes
are summarized in Fig. 7.
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Hydrolysis of Acyl-CoA—To investigate if this hydrolysis of
ricinoleoyl-CoA was catalyzed by LPCAT or by endogenous
yeast enzymes, microsomal preparations from yeast trans-
formedwith empty plasmid were incubated with 18:1-CoA and
ricinoleoyl-CoA with increasing BSA concentrations. In the
absence of BSA, the ricinoleoyl-CoA was hydrolyzed five times
faster than 18:1-CoA (Fig. 8). The effect of BSA addition on the
activity of the thioesterase with 18:1-CoA confirmed previous
reports for acyl-CoA thioesterases (32). At low BSA concentra-
tion, the rate of hydrolysis increased, probably due to the dis-
appearance of inhibitory acyl-CoA micelles. Higher BSA con-
centration caused a decrease in hydrolysis, presumably due to
an inability of the esterase to operate on BSA-bound substrate.
The hydrolysis rate of ricinoleoyl-CoA was, however, largely
unaffected by addition of BSA, suggesting that this acyl-CoA
may be unable to bind to BSA. It should be noted that even if the
hydrolysis of ricinoleoyl-CoA was much higher than for 18:1-
CoA, it was only about 3–15% of the acylation rate of ricino-
leoyl-CoA to LPC (see e.g. Fig. 3A). Thus, the low acylation rate
of ricinoleoyl-CoA to LPC compared with other unsaturated
acyl-CoA substrates (Fig. 3) was not due to substrate depletion
by a ricinoleoyl-CoA hydrolysis.
Acyl Specificities and Selectivities of LPCATs from Plants

Accumulating Hydroxy Fatty Acids—In view of the above
obtained results, indicating that LPCAT could be involved in
removing ricinoleic acid from PC, we characterized yeast
expressed LPCAT cDNA clones obtained from developing
seeds of three species accumulating high amounts of hydroxy

fatty acids in the seed oils. These enzymes were LPCATs from
castor bean (Ricinus communis) andHiptage benghalensis, both
accumulating ricinoleic acid, and Lesquerella fendleri that
accumulates lesquerolic acid ([11Z,14R]14-hydroxyicos-11-
enoic acid). It should be noted that the first step in lesquerolic
acid biosynthesis is the formation of ricinoleic acid on PC (33).
In addition to these enzymes, we also characterized LPCAT
from safflower (Carthamus tinctorius), a plant accumulating
only “common” fatty acids in its seed oil.
The specific activities in the forward reaction of the different

LPCATs in microsomes from yeast expressing these enzymes
varied between 200 and 2,300 nmol/min/mg of protein using
18:1-CoA as acyl donor, with LPCAT1 fromArabidopsis andH.
benghalensis having the lowest specific activity (Fig. 9A). The
acyl specificities for a range of acyl-CoAswere rather similar for
all the C18-unsaturated acyl-CoAs except the acyl specificity of
L. fendleri LPCAT2 that utilized 18:2-CoA nearly at a double
rate in comparison with 18:1-CoA. Palmitoyl-CoA was very
poorly utilized, whereas ricinoleoyl-CoA was a slightly better
acyl donor for all LPCATs tested (Fig. 9B). We also expressed
LPCAT genes fromBernardia pulchella, accumulating vernolic
acid (12-epoxyoctadec-9-enoic acid), tung (Aleurites fordii),
and bitter melon (Momordica charantia) that accumulate
�-eleostearic acid (octadeca-9Z,11E,13E-trienoic acid) in their
seed oils. However, the activities of these enzymes were more
than 2 orders of magnitude lower than the activity of the other
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LPCATs, and forMomordica it was barely detectable (data not
shown). Because of the low activity of these enzymes in the
yeast microsomes, we were not able to get reproducible results
for further characterization.
Our results on the acyl specificities of the castor bean LPCAT

were in some respects in sharp contrast to those reported
recently (34). The specific activities of the castor bean enzyme
for 18:1-CoA, 16:0-CoA, and ricinoleoyl-CoA were reported to
be in the same range as we report here, whereas 18:2-CoA was
reported to be not utilized at all and 18:3-CoA very poorly.
However, the authors of this paper have re-assayed the LPCATs
with 18:1-CoA, 18:2-CoA, and 18:3-CoA and found that the
published assays with 18:2 and 18:3-CoA were erroneous, and
the activity with these substrates were similar to 18:1-CoA and
thus very similar to our results.4
To further characterize the castor bean LPCAT, we per-

formed the same acyl-CoA selectivity experiment as with Ara-
bidopsis LPCATs (Fig. 10). The results showed that 18:1, 18:2,
and 18:3-CoA were all well utilized, whereas ricinoleoyl-CoA
was even more selected against than by the Arabidopsis
LPCATs (compare Figs. 3B and 10).
The dominant TAG species in castor bean oil is tri-ricino-

leoyl-TAG, and thus, the last step in formation of TAG must
primarily use di-ricinoleoyl-DAG. Because ricinoleic acid is
produced on PC, it can be speculated that di-ricinoleoyl-PC
is formed in the seed and rapidly converted to di-ricinoleoyl-
DAG, to be utilized in TAG synthesis. We therefore tested
how efficient castor bean LPCAT utilized ricinoleoyl-LPC in
comparison with 18:1-LPC in acylation of either oleoyl-CoA
or ricinoleoyl-CoA or a mixture of these acyl-CoA species.
We also compared the results with the corresponding incu-
bations with AtLPCAT2. Both enzymes showed the same
specificities when single acyl-CoA substrates were presented
with ricinoleoyl-LPC with ricinoleoyl-CoA being a much
poorer substrate than the 18:1-containing substrates (Fig.
11A). The combination of ricinoleoyl-LPC and ricinoleoyl-
CoA gave the lowest acylation rates (Fig. 11A). We then pre-
sented the enzymes an equimolar mixture of 18:1-CoA and

ricinoleoyl-CoA together with either 18:1-LPC or ricino-
leoyl-LPC (Fig. 11B). The proportion of ricinoleoyl groups
acylated was always less than oleoyl groups in all incuba-
tions. However, ricinoleoyl-CoA groups competed much
better with 18:1-CoA compared with the competition assays
done also with 18:2-CoA and 18:3-CoA included (Fig. 9). The
highest ratio of ricinoleoyl to oleoyl groups acylated was
about 0.5 and was obtained with AtLPCAT2 with ricino-
leoyl-LPC. It can be concluded that castor bean LPCAT did
not preferentially produce di-ricinoleoyl-PC, and thus the
di-ricinoleoyl-DAG used for TAG synthesis in castor bean is
unlikely to be derived from re-editing of PC by LPCAT.
We assayed the selectivity in the reverse reaction of the var-

ious LPCAT enzymes with an equimolar mixture of sn-2-
[14C]18:1-PC and sn-2-[14C]ricinoleoyl-PC and added unla-
beled 18:1-CoA and compared it with theArabidopsis enzymes
(Fig. 12). All seven LPCATs catalyzed the removal of ricinoleoyl
groups from PC faster than 18:1, with a ratio ranging from
3-fold forH. benghalensis LPCAT1 to 6-fold for castor LPCAT
and Arabidopsis LPCAT2. As in the corresponding previous
incubations with Arabidopsis LPCAT2 (Fig. 6), nearly all of the
removed ricinoleoyl groups were found as free ricinoleic acid in
all assays (data not shown).4 F. Maroto, personal communication.
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DISCUSSION

PC is not only the major membrane phospholipid in plant
cells but also the substrate for production of polyunsaturated
fatty acids and a number of unusual fatty acids produced by
desaturase-like enzymes (1). Therefore, the precursor fatty acid
for all these fatty acids has to be efficiently channeled into PC
and the modified acyl groups transferred out of PC to other
lipids, including into TAGs in oil seeds, where they can occur in
very high amounts. Two enzyme systems have recently been
shown to be involved in this channeling of fatty acids into PC
and out of PC inArabidopsis seeds, the PDCT and the LPCATs
(35). The PDCT converts DAGproduced by the Kennedy path-
way to PC by catalyzing the transfer of a phosphocholine group
directly from PC to DAG and thereby equilibrates the DAG
moieties of these two molecules. An Arabidopsis insertion
mutant of the PDCT coding gene (ROD1) reduces the amount
of polyunsaturated fatty acids in seed TAGs by 40% (12).
Although a double knock-out ofArabidopsis lpcat1/lpcat2 only
slightly reduced the polyunsaturated fatty acids in seed TAGs
(36), a triple insertion mutant (rod1/lpcat1/lpcat2) reduced the
content of these fatty acids in TAG by 66% (35). These experi-
ments clearly show that LPCATs and PDCT, working in concert,
are the main enzymes responsible for the channeling of PC-de-
rived fatty acids into TAG in developingArabidopsis seeds.
During [14C]acetate labeling of developing seeds of soybean

and Arabidopsis, 86 and 70%, respectively, of the labeled fatty
acids initially incorporated into PC were confined to the sn-2-
position (36, 37). In contrast, an Arabidopsis double mutant of
lpcat1/lpcat2 showed a nearly equal distribution of the label in
both sn positions of PC, even at short incubation times, mirror-
ing the distribution of label in DAG (35, 36). This strongly sug-
gests that LPCAT enzymes are responsible for the immediate
incorporation of acyl groups exported from the plastid into PC
at the sn-2 position of PC. The results presented here indicate
that LPCAT1 and LPCAT2 can catalyze both the acylation and
de-acylation of fatty acids at the sn-1 position of PC. The rate of
acylation at sn-1 ranged from15 to 70% that of the sn-2 position

in assays with ether analogs of LPC, and the positional prefer-
ence was highly dependent on both acyl-CoA concentration
and acyl-CoA species. These in vitro data are consistent with
the hypothesis that the initial incorporation of 18:1 at the sn-1
position of PC in vivo (37) also could be carried out by LPCAT.
In developing soybean embryos, the 14C-labeled acyl groups at
the sn-1 position of PC contained even at short labeling times
about 25% of saturated acyl groups, suggesting also that satu-
rated fatty acids could be directly incorporated onto the sn-1
position of PC (37). The acylation of sn-1 and sn-2 ether LPC
analog by Arabidopsis LPCAT1 and LPCAT2 showed that 16:0
is strongly selected against compared with 18:1 in acylation of
both sn positions under all different assay conditions used.
Therefore, the presence of 16:0 at the sn-1 position of PC in
Arabidopsis is not likely to involve LPCATs to any significant
extent, but rather it may be due to incorporation from newly
synthesizedDAG, either via PDCTorCDP-choline:DAGphos-
photransferase. The strong selection against 16:0 in acylation in
either the sn-1 or sn-2 position of PC indicates that PC acyl
remodeling catalyzed by LPCAT reduces the amount 16:0 in PC
and thereby reduces 16:0 content in PC-derived DAG com-
pared with de novo synthesized DAG.
Seven different LPCAT enzymes derived from five different

plant species were characterized, and all showed similar acyl
specificities. Acyl-CoA derivatives of 16:0 and ricinoleic acid
were poorly utilized and were almost outcompeted by unsatu-
rated acyl-CoAs, whereas unsaturated C18 acyl groups were all
well utilized. This indicates that ricinoleic acid is likely not
entering PC through the action of LPCAT enzymes. In plants
accumulating ricinoleic acid-rich oil, this fatty acid is synthe-
sized by hydroxylation of 18:1 esterified mainly at the sn-2-
position of PC and then specifically removed for its subsequent
channeling into TAG (6). It can therefore be assumed that once
transferred to the acyl-CoA pool, ricinoleoyl groups will not
re-enter PC by the action of LPCATs.
The LPC substrate for acylation catalyzed by LPCAT could

be generated by the action of phospholipase A on PC. This
hypothesis was put forward by Lands (5) as the mechanism for
acyl remodeling of PC, the so-called Land’s cycle. Another
hypothesis was that LPCAT itself generates its own LPC acyl
acceptor by its reverse reaction (16). The latter hypothesis has
attractive features because it does not necessitate a lipase and
an activation of the liberated fatty acid to acyl-CoA, and thus,
instead of highly coordinated actions of three enzymes, it only
needs one enzyme and no ATP. Overexpression of LPCAT1
and LPCAT2 in Arabidopsis showed a significant increase in
polyunsaturated fatty acids in seed oil (36). Because the removal
of fatty acids from PC is likely to be the rate-limiting step in the
acyl editing by LPCAT, this effect cannot easily be explained by
the removal of polyunsaturated fatty acids catalyzed by phos-
pholipases. Instead, it supports the hypothesis that the transfer
of the fatty acids formedonPC to the acyl-CoApool and further
to TAG is at least to some extent catalyzed by the reverse reac-
tion of LPCAT and further channeled to TAGs.
Our results clearly show that the LPCATs in microsomal

preparations can carry out the reverse reaction at rates corre-
sponding towhat can bemeasured in forward reaction for other
microsomal acyltransferases expressed in yeast. In the reverse

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

[14
C]

 a
cy

l g
ro

up
s 

in
 a

cy
l-C

oA
  

an
d 

fr
ee

 fa
tt

y 
ac

id
s 

(n
m

ol
) 

18:1 ric 

FIGURE 12. Quantification of radioactive products of the reverse reac-
tions of various LPCATs using with an equimolar mixture of sn-1–16:0-
sn-2-[14C]18:1-PC and sn-1–16:0-sn-2-[14C]ricinoleoyl-PC as substrates.
Each bar represents the sum of radioactivity found in the acyl-CoA and free
fatty acids of the particular acyl group. In the absence of acyl exchange, only
trace amounts of radioactivity were found in any of these fractions (see Fig. 6,
assays with DTNB). Assays were performed as described under “Experimental
Procedures” for the reverse reaction of LPCAT with added nonradioactive
18:1-CoA for 1 h. Four assays for reverse reaction were pooled before extrac-
tion and separation of lipids. Dark gray bars, [14C]18:1-CoA and free acid; light
gray bars [14C]ricinoleoyl-CoA and free acid. Lf, L. fendleri; Ct, C. tinctorius; Rc, R.
communis; Hb, H. benghalensis; Ric, ricinoleoyl.
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reaction, the AtLPCAT enzymes did not discriminate between
any of the unsaturatedC18 acyl groups andhad a high selectivity
for the sn-2 position. The results further imply that there is a
direct transfer of acyl groups from PC to free CoA with no free
fatty acid intermediate formed, because free CoA was essential
for the reverse reaction. In order for the reverse reaction to be
significant in vivo, the enzyme activity has to be high and the
concentrations of LPC and acyl-CoA very low compared with
the concentrations of PC and free CoA. These three criteria are
likely to be valid in vivo. The specific activity of theArabidopsis
LPCAT2 in the forward reaction, when expressed in yeast
microsomes, was about 100 times higher than other acyl-CoA
acyltransferase activities that have been expressed in such
microsomes (26, 27). LPC and PC concentrations in Arabidop-
sis seed cells have been reported to be about 0.05% (36) and 48%
(38), respectively, of all polar lipids. The bulk of the acyl-CoAs is
believed to be bound to ACBP in cells and might therefore not
be available for the enzyme.The concentration of free acyl-CoA
in cells has been estimated to be in the nanomolar range (39).
We could not find any reports on levels of free CoA in the
cytosol of plant cells, but in animal cells they have been
reported to be around 5 �M, i.e. 3 orders of magnitude higher
than the free acyl-CoA concentration (40). It should be noted
that the driving force behind the sustained reverse reaction of
LPCAT is the reacylation of the formed LPC by the forward
reaction of the same enzyme that will keep the LPC concentra-
tion low and result in an equilibration between the acyl groups
in the acyl-CoA pool and acyl groups in PC.
Castor bean PDAT was suggested to specifically transfer

ricinoleoyl groups from PC to TAG (21). Co-expression of cas-
tor bean PDAT together with castor bean �12-hydroxylase led
to a decrease of ricinoleoyl groups in PCand an increase inTAG
concomitant with a restoration of oil content in the seeds to
near wild-type levels (31). This strongly supports the idea that
castor bean PDAT plays a significant role in channeling ricino-
leoyl groups fromPC toTAG.The specific removal of ricinoleic
acid from PC by phospholipases with subsequent activation to
acyl-CoA and further channeling into TAG has also been pro-
posed (6, 41). However, no candidate genes for such phospho-
lipases have yet been identified. LPCAThas previously not been
suggested to be involved in the selective removal of ricinoleoyl
groups from PC. Very unexpectedly, we found that ricinoleoyl
groups in PC were removed up to six times faster than 18:1 by
the reverse reaction of AtLPCAT2, despite that they were very
poor substrates in the forward reaction. A selectivity for ricino-
leoyl groups was seen for castor bean, H. benghalensis, and L.
fendleri LPCATs, plants that naturally accumulate TAG rich in
hydroxy fatty acids, but also for LPCATs from safflower, a plant
that, like Arabidopsis, does not accumulate such fatty acids.
Thus, LPCAT is a potential candidate enzyme for the specific
transfer of ricinoleoyl groups from PC directly to the acyl-CoA
pool by its reverse reaction. Because Arabidopsis LPCAT2 was
as efficient and selective as the castor bean enzyme, it implies
that transfer of ricinoleoyl groups fromPC to the acyl-CoApool
should not constitute any bottleneck for the accumulation of
high proportions of ricinoleic acid in the seed oil ofArabidopsis
expressing the castor bean�12-hydroxylase. In vivo radioactive
labeling experiments in transgenic Arabidopsis strongly sup-

port this suggestion by showing that there is a highly efficient
mechanism for transferring ricinoleoyl groups from PC to
newly synthesized DAG in these seeds. In labeling experiments
with developing Arabidopsis seeds expressing the castor bean
�12-hydroxylase, less than 2.5% of the fatty acids found in PC
were hydroxylated, but about half of the newly synthesized
DAG species contained a hydroxylated fatty acid (42). This
indicates that the acyl-CoA pool that is utilized by the sn-glyc-
erol 3-phosphate and lysophosphatidic acid acyltransferases in
these developing seeds is highly enriched in ricinoleoyl groups
compared with the concentration of this fatty acid in PC. The
bottleneck in the accumulation of hydroxylated fatty acids in
the seed TAG in developingArabidopsis appeared instead to be
in the utilization of ricinoleoyl containing DAG (42). This bot-
tleneck could be alleviated by co-expression of castor bean
DGAT and PDAT (31). All LPCATs tested in this study showed
a higher rate of removal of ricinoleic acid than of 18:1 from PC.
The ratio of ricinoleyl to 18:1 removal varied from 3 to 6, which
may suggest that this specificity is not necessarily an intrinsic
property of all LPCAT enzymes. Because microsomal fractions
from developing seeds that are not producing ricinoleic acid
showed high and specific phospholipase activities toward
ricinoleoyl-PC, it was suggested that these enzymesmight serve
as a general scavenger for oxygenated fatty acids in the mem-
branes, protecting them from damage (41). The results here
presented indicate that the reverse reaction catalyzed by
LPCAT also might serve this purpose.
Like all microsomal membranes, the yeast membranes con-

tain acyl-CoA esterases. We showed that these esterases have
much higher activity with ricinoleoyl-CoA than with oleoyl-
CoA and resulted in a near complete hydrolysis of ricinoleoyl-
CoA formed by the reverse reaction catalyzed by LPCAT. Fur-
thermore, the rate of hydrolysis was essentially unaffected by
addition of BSA, whereas an excess amount of this protein
caused a significant decrease in hydrolysis of oleoyl-CoA.
Although this was not investigated further, it may suggest that
ricinoleoyl-CoA does not bind to BSA. It is believed that most
acyl-CoA in the cell is bound to ACBPs (39). It has been shown
that Arabidopsis ACBP and BSA have similar and strongly
inhibitory effects on acyl-CoA hydrolysis by safflower micro-
somal acyl-CoA esterases (43). As far as we know, there are no
reports on the binding capacity of ricinoleoyl-CoA and other
oxygenated acyl-CoAs toACBPs.However, it can be speculated
that high intrinsic activity of acyl-CoA esterases toward oxy-
genated acyl-CoAs, possibly combined with an inability of
ACBP proteins to protect them from hydrolysis, prevents these
acyl groups from being used by acyltransferases in the forma-
tion of membrane lipids that could affect membrane integrity
and function. Thus, it is possible that specialized ACBPs in
castor bean seeds and other plants that accumulate high
amounts of oxygenated fatty acids in their seed oilsmight play a
role in maintaining them in the acyl-CoA pool for their further
channeling by acyltransferases into the oil.
In conclusion, published in vivo labeling studies of develop-

ing seeds of Arabidopsis and soybean suggest that a majority of
the fatty acids newly exported from the plastid is not first acyl-
ated to the glycerol backbone via the Kennedy pathway but is
instead entering PC,mainly at the sn-2 position (36, 37). Studies
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ofArabidopsis disrupted in LPCAT genes suggest that LPCATs
are responsible for this initial incorporation into PC (35, 36).
Our biochemical studies suggest that LPCATs can incorporate
acyl groups at both sn positions and thus could be involved in
direct incorporation of acyl groups also at the sn-1 position of PC.
Furthermore, we showed that LPCAT is responsible for the in
vitro acyl exchange between acyl-CoAandPC, as suggestednearly
30yearsagousingmicrosomal fractions fromdevelopingsafflower
seeds (16).We also consider that in vivo conditions could support
such a reverse reaction at rates that are physiologically significant.
We further showed that ricinoleoyl groups are preferentially and
rapidly removed in the reverse reaction of LPCATs but poorly
utilized in the forward reaction. Published in vivo studies are con-
sistent with our in vitro studies suggesting an important role for
LPCATs in transferring polyunsaturated and ricinoleoyl groups
from PC directly into the acyl-CoA pool by acyl exchange.
It is perhaps impossible by traditional in vivo radioactive

labeling experiments to conclusively determine whether acyl
exchange between PC and acyl-CoA is occurring via the reverse
reaction of LPCAT or by the release of fatty acids mediated by
phospholipase A and the subsequent activation to acyl-CoA.
An approach using [13C2,18O2]acetic acid isotope labeling of
developing Arabidopsis seeds knocked out in their PDAT and
PDCT activities is likely to yield information to which extent
the fatty acids formed on PC are passing through a free fatty
acid intermediate before ending up in TAGs. Such an approach
has previously been used successfully to establish that acyl
groups formed de novo in the plastid pass through a free fatty
acid intermediate before being activated to acyl-CoA and uti-
lized in cytosolic lipid synthesis (44).
Our findings of very high activities of yeast acyl-CoA

esterases toward ricinoleoyl-CoA and the inability of BSA to
inhibit this hydrolysis warrants future studies on specificities of
plant acyl-CoA esterases toward oxygenated fatty acids and the
abilities of plant ACBP proteins to bind such acyl-CoA species.
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