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The yeast acylglycerol acyltransferase LCA1 is a key component
of Lands cycle for phosphatidylcholine turnoverq
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Abstract Cellular phospholipids undergo deacylation and
reacylation through a process known as Lands cycle. In this re-
port, we provide evidence demonstrating that yeast YOR175c,
herein designated as LCA1, encodes a key component of the
Lands cycle, the acyl-CoA: lysophosphatidylcholine acyltrans-
ferase (LPCAT). Deletion of LCA1 resulted in a drastic reduc-
tion in LPCAT activity, while over expression led to a several
fold increase in enzyme activity. We further show that disruption
of LCA1 caused an enhanced production of glycerophosphoryl-
choline, a product of phosphatidylcholine (PC) deacylation and
that the lysophosphatidic acid acyltransferase SLC1 was not in-
volved in this process. Identification of LCA1 provides an essen-
tial molecular tool for further study of Lands cycle in PC
turnover.
� 2007 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Phosphatidylcholine (PC) serves not only as a major compo-

nent of cellular membranes, but also as a fatty acyl donor for

neutral lipid biosynthesis in eukaryotic organisms and a source

for the production of lipid messengers. There are two meta-

bolic routes through which PC is generated [1]: (i) the Kennedy

cytidine 5 0diphosphocholine (CDP-choline) pathway, where

diacylglycerol (DAG) is a precursor and directly condensed

with CDP-choline; and (ii) a pathway where CDP–DAG is a
Abbreviations: PC, Phosphatidylcholine; CDP-choline, cytidine 50-
diphosphocholine; DAG, diacylglycerol; LPCAT, acyl-CoA: lysophos-
phatidylcholine acyltransferase; LPAAT, acyl-CoA: lysophosphatidic
acid acyltransferase; EUROSCARF, European Saccharoymces
cerevisiae archive for functional analysis; DTT, dithiothreitol; PAF,
platelet-activating factor; TCA, trichloroacetic acid; MBOAT, mem-
brane-bound O-acyltransferase; LPA, lysophosphatidic acid; LPC,
lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPG,
lysophosphatidylglycerol; LPI, lysophosphatidylinositol; GroPC, glyc-
erophosphorylcholine
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direct precursor, involving phosphatidylserine formation and

decarboxylation and phosphatidylethanolamine methylation.

In the presence of choline, the Kennedy pathway is believed

to be the main route of PC generation in yeast. As a major

phospholipid of eukaryotic cell membrane systems, the level

of PC is maintained by a balance of synthesis and degradation.

An important aspect of PC metabolism ubiquitous in eukary-

otic systems is a process first discovered by Lands [2] that con-

cerns the active turnover of the acyl groups in PC. The

eponymous ‘‘Lands Cycle’’ proposes a deacylation–reacylation

process that starts with the deacylation of PC to produce lyso-

phosphatidylcholine (LPC), followed by a reaction that reacy-

lates LPC to PC. The significance of this pathway in the

homeostasis of glycerolipids has received a considerable atten-

tion since the deacylation–reacylation process concerns the

remodeling of phospholipid molecules. In animal cells, it has

been shown that this pathway is important for the incorpora-

tion of long chain fatty acids (e.g. arachidonic acid) into PC,

which is released from PC during inflammatory responses [3].

The enzymatic components responsible for the deacylation

of PC in yeast have recently been identified [4,5]. The reacyla-

tion of LPC is mediated by an acyl-CoA: lysophosphatidyl-

choline acyltransferase (LPCAT, E.C. 2.3.1.23). Although

the yeast microsomal LPCAT activity was demonstrated three

decades ago [6,7], the identity of the enzyme remains elusive. A

yeast tafazzin homolog was previously reported as capable of

acylating LPC [8], but this enzyme appeared to be acyl-CoA

independent [9,10]. More recently, a LPCAT involved in pul-

monary surfactant PC production was reported [11,12] in

mammals, but it was not involved in general membrane lipid

synthesis [11]. Here we provide evidence demonstrating that

YOR175c, herein designated as LCA1, possesses LPCAT

activity and plays a pivotal role in PC turnover as a compo-

nent of a lipid remodeling cycle first proposed by Lands [2].
2. Materials and methods

2.1. Strains and reagents
Yeast strains: BY4741 (WT, MATa hisD1 leuD0 metD0 uraD0),

Y02431 (lca1D, MATa his3D1 leu2D0 met15D0 ura3D 0
YOR175c::KanMX4) and Y03749 (slc1D, MATa his3D1 leu2D0
met15D0 ura3D0 YDL052c::KanMX4) were purchased from European
Saccharoymces Cerevisiae archive for functional analysis (EURO-
SCARF). Various lysophospholipids and acyl-CoAs were obtained
from Avanti Polar Lipids (Alabaster, AL). [14C] oleoyl-CoA, [14C] pal-
mitoyl-CoA, [14C] palmitoyl-LPC were purchased from American
Radiolabeled Chemicals Inc. Yeast extract, Yeast Nitrogen Base, Bac-
to-peptone, and Bacto-agar were purchased from Difco�, DD-glucose,
ation of European Biochemical Societies.
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DD-galactose and DD-raffinose were from Sigma. SC minimal medium
and plates was prepared according to Invitrogen’s recipe described
for the pYES2.1 TOPO TA Cloning Kit.

2.2. Gene expression vector construction
For TOPO TA-cloning and yeast complementation, Saccharomyces

cerevisiae YOR175c ORF was PCR-amplified with primers FP:
5 0GGTGATTCTAGACTGCTGCTGATCGCTT3 0 and RP:
5 0GCATCTGTCGTTTTTGGAGCTCTACTCTT30, and cloned into
pYES2.1 vector (Invitrogen). Correctly-oriented plasmids were identi-
fied by DNA sequencing and subsequently introduced into yeast strain
Y02431.

2.3. Microsomal preparation
Yeast strains were first grown in 15 ml of SC-leu-his-ura medium

containing 2% glucose. Protein expression induction was carried out
as described in Invitrogen manufacturer manual for yeast expression
vector pYES2.1. After 24 h of growth in SC + 2% galactose + 1% raf-
finose induction conditions, the cells were washed, first with distilled
water and then with wall-breaking buffer [50 mM Tris–HCl, 1 mM
EDTA, 0.6 M sorbitol, pH 7.4, 1 mM dithiothreitol (DTT)]. After cen-
trifugation at 4000 rpm (Eppendorf Centrifuge 5145C), the cells were
resuspended in 1 ml wall-breaking buffer with 10 ll yeast protease
cocktail (Sigma), and shaken vigorously in the presence of acid-washed
glass beads (diameter 0.5 mm). The resultant homogenate was centri-
fuged at 12000 rpm for 10 min at 4 �C. The decanted supernatant
was further centrifuged at 100000 · g for 90–120 min at 4 �C. The
supernatant was discarded, and the pellet was suspended in homogeni-
zation buffer containing 20% glycerol and frozen at �80 �C until use.
Protein concentration was measured using Bio-Rad Protein Assay
Kit for final enzyme activity calculation.

2.4. In vitro assay of LPCAT activity
LPCAT substrate specificity was determined by measuring incorpo-

ration of [14C] LPC or [14C] palmitoyl-CoA into PC. All assays were
performed at least twice. For lysophospholipid substrate specificity
assessment, 400 ll HEPES buffer contained 3 lg microsomal protein,
50 lM of lysophospholipid substrates and 112.5 lM [14C] palmitoyl-
CoA (5.5 nCi/nmol). For acyl-CoA substrate selectivity analysis,
400 ll HEPES reaction buffer (pH 7.4, 0.1 M) contained 3 lg micro-
somal protein, 50 lM acyl-CoA and 112.5 lM [14C] palmitoyl-PC
(1.35 nCi/nmol). Reaction was allowed for 2 min at 30 �C with
100 rpm shaking. The reaction products were extracted with chloro-
form/methanol (2/1, v/v) and separated with Merck silica G60 TLC
plates. Spots corresponding to different phospholipid species products
were scraped off and 14C incorporation were scintillation counted. Dif-
ferent concentrations of ZnCl2 were added in to reactions for Zn2+

inhibitory effect assay.

2.5. Lyso-PAF sensitivity
Yeast strains Y02431 over-expressing LCA1 or harboring empty

vector were first grown in 15 ml of SC-ura medium containing 2% glu-
cose then transferred to SC-ura + 2% galactose and 1% raffinose. After
12 h LCA1 expression induction, the culture was diluted to correspond
to OD600 value of 0.5, 1, 2, 3, 4. Five microliters of each dilution was
spotted to a YPD plate supplemented with varying concentrations of
lyso-platelet-activating factor (PAF). The plates were incubated at
28 �C for 2 days.

2.6. PC turnover analysis
PC turnover analysis was performed according to previously de-

scribed method [13] with slight modification. Briefly, Y02431 and
BY4741 yeast cells were grown overnight in chemically defined syn-
thetic media without inositol and choline. Yeast at OD600 = 1.5 were
used to inoculate fresh chemically defined synthetic media containing
0.15 lCi/ml [14C] choline chloride (20 lM). Cells were harvested
through centrifugation after 5 h labeling, washed twice in fresh non-
radioactive medium, and then inoculated into in medium containing
10 mM non-radioactive choline. At different time points, 1 ml aliquots
were removed and centrifuged. The supernatant was saved as the
‘‘medium’’ fraction. The cell pellet was suspended in 0.5 ml 5% trichlo-
roacetic acid (TCA) and incubated on ice with frequent vortexing. Fol-
lowing centrifugation at 14000 rpm (5414D, Eppendorf), the TCA-
containing supernatant was decanted as ‘‘intracellular water-soluble
fraction’’, and neutralized by adding 1 M Tris–HCl (pH 8.0) to avoid
acid-induced luminescence in scintillation counting. The pellet was
saved as the ‘‘membrane’’ fraction. The labeling of each fraction was
measured and presented as percentage of total counts in all the three
fractions.

To confirm that the majority of choline-containing compounds in
the TCA fraction were glycerophosphorylcholine (GroPC), the frac-
tions from WT and lca1D yeast cells chased for 2 h at 37 �C were ap-
plied to Merck silica G60 gel and developed in a solvent system
containing methanol/0.5% NaCl/NH3 Æ H2O (50/50/1, v/v/v)[14]. After
separation, only one major [14C]-labeled band was detected. This band
was scraped off, and re-extracted with distilled water to get rid of TCA.
After lyophilization, it is re-applied onto Merck silica G60 plate along
with other choline-containing standards. [14C] choline and [14C] cho-
line containing compound from the TCA fractions were detected with
a scanner (Bioscan Inc.). LPC was stained by iodine exposure, and
other choline-containing standards were visualized by molybdenum
blue spray, a detection reagent specific for phosphorus in GroPC,
phosphocholine and CDP-choline [15].
3. Results and discussion

3.1. Deletion of YOR175cp leads to reduced LPCAT activity

A seminal work by Schuldiner et al. reported a comprehen-

sive genetic-interaction map on the organization of the yeast

early secretory pathway [16]. Several fatty acyltransferase

genes were analyzed in the study, including the previously

identified sn-2 acyltransferase SLC1. While a negative score

<�3 would imply synthetic sick/lethal interaction, the assigned

score for double mutant of slc1 and yor175c was �20 (http://

phoibe.med.utoronto.ca/erg/php/menu.php). This was striking

in light of the fact that residual acyltransferase activity in slc1D
mutant was at a level sufficient for balanced cellular growth

[17,18]. A simplest explanation of the exacerbated phenotype

of combined deficiency in SLC1 and YOR175c is that

YOR175c is a sn-2 acyltransferase, either like SLC1, a lyso-

phosphatidic acid acyltransferase (LPAAT), or alternatively

another lysophospholipid acyltrasferase. YOR175c does not

exhibit significant sequence similarity to other sn-2 acyltrans-

ferases reported to date, but it is a membrane-bound O-acyl-

transferase (MBOAT) family protein [19], and was shown to

be localized in endoplasm reticulum [20]. Members of the

MBOAT family with confirmed functions include diacyglycer-

ol acyltransferase, sterol acyltransferase.

In a preliminary experiment, we first examined if disruption

of YOR175c would have any impact on LPAAT and LPCAT

activities using both the parental strain and a slc1D mutant as

controls. Consistent with previous report [17], when lysophos-

phatidic acid (LPA) (18:1) was supplied as acyl acceptor, the

cell lysate of slc1D mutant had a LPAAT level reduced to

63% of the parental strain, but we detected no significant

LPAAT reduction in the yor175cD mutant. In marked con-

trast, when LPC was provided as acyl acceptor, our in vitro as-

say showed acyltransferase activity reduction in yor175cD to a

level approximately 28% of the parental strain. The slc1D dis-

played no significant decrease in LPCAT activity as compared

with WT strain (Fig. 1).

We further investigated sn-2 lysophospholipid acyltransfer-

ase activity in yor175cD by using microsomal enriched frac-

tions with different lysophospholipid acyl acceptors and

palmitoyl-CoA (16:0-CoA). In keeping with the results of total

cell lysate, microsomal fractions of the yor175cD strain showed

a striking decrease in LPCAT activity. Lysophosphatidyletha-

nolamine (LPE) and lysophosphatidylglycerol (LPG) acyl-

http://phoibe.med.utoronto.ca/erg/php/menu.php
http://phoibe.med.utoronto.ca/erg/php/menu.php
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Fig. 1. Comparison of LPAAT and LPCAT activity of slc1D, lca1D,
and their congenic WT yeast strain. Cell lysates equivalent to 200 lg
protein were assayed for acylation of oleoyl-LPA and oleoyl-LPC with
[14C] oleoyl-CoA. The reaction mixture contained 45 lM 18:1-LPA or
18:1-LPC, 18 lM (10 nCi/nmol) 18:1-CoA. The reaction was to
proceed for 30 min at 30 �C with 100 rpm shaking. The results were
presented as a mean of three assays.
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Fig. 3. Lyso-lipid substrate specificity of LCA1. The assays were
preformed with 3 lg microsomal protein from lca1D harboring an
empty vector (VO) and lca1D expressing LCA1. The reaction
contained 112.5 lM [14C] palmitoyl-CoA (5.5 nCi/nmol) and 50 lM
lysophospholipid substrate (LPA, LPC, LPE, LPG, LPI and LPS).
Reaction was allowed for 2 min with 100 rpm shaking. The results
were presented as a mean of three assays.

Control 

5 µg/ml 5 µg/ml

lca1Δ

WT

LCA1

Q. Chen et al. / FEBS Letters 581 (2007) 5511–5516 5513
transferase were also slightly decreased, but to a much lesser

degree (Fig. 2). Since LPCAT activity was singularly the most

drastically affected, we thus designate YOR175c as LCA1,

which stands for lysophosphatidylcholine acyltransferase.

3.2. LCA1 displays in vitro acyltransferase activity with

preference for LPC

We next resorted to over-expression to assess the enzyme

properties of LCA1. Microsomal preparations of lca1D mutant

expressing LCA1 and lca1D harboring the empty vector (VO)

were used to perform acyltransferase assays with [14C] palmi-

toyl-CoA and various lysophospholipids substrates including

LPA, LPC, LPE, LPG, LPI and LPS. As shown in Fig. 3,

the highest activity was found with LPC as substrate. The

activity of LPC acylation was linear at 30 �C for 20 min, and

the conversion of LPC to PC is negligible in the absence of

16:0-CoA (data not shown). Over-expression of LCA1 also

caused substantial increases in the acylation of LPG and

LPE. But the rates of LPG and LPE acylation were at a level
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Fig. 2. Lysophospholipid acyltransferase activity in lca1D, and its
congenic WT yeast strains. Microsomal preparations were assayed for
acylation of palmitoyl-LPA, LPC, LPE, LPG, LPI and LPS with [14C]
palmitoyl-CoA. The reaction mixture contained 45 lM lysophospho-
lipid, 27 lM (10 nCi/nmol) 16:0-CoA and 50 lg protein. The results
were presented as a mean of three assays.
approximately 60% and 20%, respectively, of the activity regis-

tered for LPC. Activities for LPA, LPS and LPI, were all less

than 1% of the activity of LPCAT. Thus, LCA1 appeared

capable of accepting several major lysophospholipid classes,

but under our assay conditions it exhibited the highest activity

with LPC. That LCA1 was capable of acylating multiple lyso-

phospholipid molecules was not surprising because substrate
LysoPAF
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20 µg/ml  
LysoPAF

LysoPC

10 µg/ml  
LysoPC

20 µg/ml  
LysoPC

Fig. 4. Lyso-PAF and lyso-PC Sensitivity test of lca1D, WT and lca1D
over expressing LCA1. Cells were grown first in SC-URA + 2%
glucose media overnight then in protein expression induction media for
6 h. Cultures were diluted to OD600 value of OD600 0.5, 1, 2, 4,
respectively, from which 5 ll was inoculated (from left to right) onto
YPD plate containing lyso-PAF or lyso-PC. The plates were incubated
at 28 �C for 36 h.



Table 1
Inhibitory effect of Zn2+ on LCA1 activity

ZnCl2 concentration LPCAT activity (% control)

0 mM (control) 100 ± 7.9
20 mM 6 ± 2.0
0.1 mM 35 ± 22.4
25 lM 149.7 ± 12.0
10 lM 136.8 ± 3.9
5 lM 98 ± 5.9

Results are expressed as means ± S.D. The lca1D over-expressing
LCA1 was used to asses Zn2+ effect. The reactions contained 5.6 lM
palmitoyl-LPC (1.35 nCi/nmol), 1.5 lg microsomal proteins, 0.1 M
HEPES (pH 7.4), 11.25 lM stearyl-CoA and indicated concentration
of ZnCl2. The reaction was stopped after 2 min by adding 2 ml of
chloroform/methanol solution (2:1).
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promiscuity has been known for other acyltransferases

[11,21,22].

3.3. Correlation of LCA1 activity with lyso-PAF sensitivity

Although not an endogenous acyl acceptor, ether-linked

glycerolipid, lyso-PAF, can be acylated in yeast, and the reac-

tion was attributed to a LPCAT [7]. When lyso-PAF was used

as acyl acceptor, the lca1D strain had a rate of lyso-PAF acyl-

ation reduced to 31.1% of WT strain. Conversely, over-expres-

sion of LCA1 resulted in 86.3-fold increase in lyso-PAF

acyltransferase activity. It was established previously that high

lyso-PAF level exerts toxic effect on yeast cells [23]. Consistent

with in vitro results, LCA1 mediating lyso-PAF acylation was

also evident in a plate assay (Fig. 4). In our study, both the

parental strain and the lca1D were capable of tolerating LPC

at a level up to 20 lg/ml, but the lca1D mutant displayed

hypersensitivity to lyso-PAF at a concentration above 5 lg/

ml. Moreover, its sensitivity to lyso-PAF was ameliorated by

the expression of LCA1. In contrast, slc1D strain could survive

and grew well on lyso-PAF plate without any apparent differ-

ence from WT cells, indicating SLC1 disruption didn’t affect

lyso-PAF acylation (data not shown). This result thus further

supported the notion that LCA1 is the major LPCAT in yeast.

3.4. Zn2+ inhibitory effect on LPCAT activity

The yeast LPCAT activity was shown to be particularly sen-

sitive to the metal ion Zn2+ while insensitive to Mg2+ [7]. To
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Fig. 5. Substrate preference assessment of LCA1. A. Acyl-CoA substrate p
lca1D harboring an empty vector (VO) and lca1D expressing LCA1, with
species. B. LPC substrate preference. Assays were preformed with 3 lg micr
lysophospholipid species. The values for lca1D were not shown. The results
further verify that LCA1 represents the dominant contributor

to LPCAT in yeast, we examined whether the LPCAT activity

of LCA1 was affected by addition of Zn2+ in in vitro assays.

Indeed, we found that Zn2+ caused significant reduction of

LPCAT activity of LCA1 in a range between 0.1 mM and

20 mM (Table 1). Our results also suggested that a lower

(10-25 lM) concentration of Zn2+ enhanced LPCAT activity.

The maximum increase was observed with 25 lM ZnCl2. We

did not detect significant effect of Mg2+ on LPCAT activity

of LCA1, in a concentration ranging from 5 to 40 lM (data

not shown).

3.5. Kinetic parameters of LCA1

The above experiments assessing enzyme properties allowed

us to conclude that LCA1 represented a major LCPAT in

yeast. We next explored the kinetic parameters of this enzyme.

Kinetics constants based on Lineweaver-Burk double-recipro-

cal plot analysis showed that LCA1 had an apparent Km for

acyl-CoA at 0.89 ± 0.25 lM and a Vmax of 524 pmol/min/lg

protein.

LPC molecules are distinguished by fatty acid chain length.

As shown in Fig. 5a, LCA1 exhibited a LPC substrate prefer-

ence in the order of oleic (18:1)-LPC > stearic (18:0)-

LPC > palmitic (16:0)-LPC. The fatty acid substrate specificity

of the LCA1 was also assessed using acyl-CoA with chain

lengths ranging from 14 to 22 carbons. Based on assays using

50 lM acyl-CoAs, LCA1 could use a broad range of acyl-

CoAs (Fig. 5b), but it displayed particularly high activities

with 16:0-CoA, 18:0-CoA and 18:1-CoA, regardless whether

18:1-LPC or 16:0-LPC was used as acyl acceptor. Interestingly,

LCA1 could also efficiently mediate LPC acylation using very

long chain fatty acyl-CoAs, such as 20:0-CoA and 22:6-CoA.

3.6. LCA1 is involved in PC turnover

Since LPCAT is a key component of the classic Lands cycle,

we next studied PC turnover by following an established proto-

col [13]. In this experiment, we included a slc1D strain in the PC

turnover analysis in order to differentiate the involvement of

SLC1 and LCA1. The yeast cells were cultured and labeled in

chemically defined synthetic medium containing [14C] choline

at 28 �C. Because higher growth temperature particularly accel-

erates the deacylation process [13], [14C] choline was subse-
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reference. Assays were preformed with 3 lg microsomal protein from
112.5 lM [14C] palmitoyl-LPC (1.35 nCi/nmol) and 50 lM acyl-CoA
osomal protein, 112.5 lM [14C] palmitoyl-CoA (5.5 nCi/nmol), 50 lM
were presented as a mean of three assays.



Table 2
Phosphatidylcholine turnover in lca1D, slc1D and BY4741 (WT) strains

28 �C 37 �C

Chase time (h): 0 1 2 0 1 2

lca1D Medium 12.1 ± 1.7 16.2 ± 1.1 17.4 ± 2.7 12.1 ± 1.7 13.2 ± 3.5 13.3 ± 1.5
Intracellular 41.1 ± 3.2 47.8 ± 2.8 53.6 ± 1.5 41.1 ± 3.2 67.9 ± 2.7 73.5 ± 2.5
Membrane 46.8 ± 2.8 36.0 ± 2.3 28.9 ± 1.5 46.8 ± 2.8 18.9 ± 3.4 13.2 ± 2.3

slc1D Medium 14.5 ± 1.1 16.1 ± 1.3 17.2 ± 1.6 14.5 ± 0.3 18.3 ± 2.3 19.7 ± 0.7
Intracellular 37.4 ± 2.1 40.1 ± 2.2 42.1 ± 3.3 37.4 ± 1.5 49.1 ± 1.9 57.4 ± 4.1
Membrane 48.1 ± 1.7 43.8 ± 2.6 40.7 ± 1.7 48.1 ± 0.9 32.6 ± 2.8 22.9 ± 1.3

WT Medium 14.1 ± 0.8 16.1 ± 2.8 17.1 ± 3.1 14.1 ± 0.8 14.9 ± 1.5 15.3 ± 0.5
Intracellular 36.5 ± 0.2 37.1 ± 1.6 41.6 ± 0.1 36.5 ± 0.2 55.9 ± 2.1 60.7 ± 4.3
Membrane 49.4 ± 0.8 46.9 ± 1.2 41.3 ± 3.2 49.4 ± 0.8 29.2 ± 0.6 24.1 ± 2.7

Yeast cells were labeled at starting OD600 = 1.5 for 5 h in chemically defined synthetic medium containing 0.15 lCi/ml. The cells were then washed
twice, cultured in medium containing 10 mM non-radioactive choline at 28 �C and 37 �C. One microliter culture aliquot was removed, separated into
three fractions then scintillation counted. The data were presented as mean of three analyses.
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quently chased by 10 mM exogenously added choline at 28 �C

and 37 �C, respectively. The 14C labels in the membrane frac-

tion, intracellular non-membrane fraction, and in the medium

were monitored at different time points (Table 2). There was

no significant difference with regard to the dynamics of mem-

brane-associated labels between slc1D and WT. Each lost about

8% at 28 �C, and 25% at 37 �C of labeling, in the membrane frac-

tion over the course of 2 h. In contrast, the lca1D strain lost 18%

at 28 �C, and 33% at 37 �C, over the same period of time. The

label was rising in the intracellular, non-membrane fraction,

which was suggested to be of mainly GroPC [13,24], a product

of PC deacylation. In order to verify the identity of the metab-

olite present in the intracellular fraction, we separated the TCA

fraction through TLC and found that only one [14C]-choline
1 2 3 4 5 6 7 

Fig. 6. TLC pattern of choline-containing compounds in the TCA
fraction for PC turnover assessment. Samples were chromatographed
and visualized on Merck Silica Gel G60 plate as described under
Section 2. Lane 1, TCA fraction of WT yeast; lane 2, TCA fraction of
lca1D yeast; lane 3, [14C] choline; lane 4, palmitoleoyl-LPC; lane 5,
GroPC; lane 6, phosphocholine; lane 7, CDP-choline. Dashed line
indicated sample origin.
band was present. The metabolite had the same migration rate

as that of GroPC (Fig. 6), thereby confirming that it was indeed

GroPC. Increased GroPC level at both 28 �C and 37 �C,

suggested that the metabolic impact was independent of PC

deacylation, therefore strongly suggesting that lca1D was com-

promised in the reacylation process of the Lands cycle. That

slc1D had a similar PC turnover rate to that of the WT strain

indicated that, although being a major sn-2 acyltransferase,

SLC1 did not appear to play a significant role in PC turnover.
4. Conclusions

An earlier report on the interaction of LCA1 and SLC1 led

us to investigate the sn-2 acyltransferase activity of LCA1. The

present study provides several lines of evidence demonstrating

that LCA1 is the hitherto unidentified LPCAT in yeast. Our

PC turnover experiments reveal that without the participation

of LCA1, the reacylation process of PC is severely crippled.

These results are consistent with the role ascribed for LPCAT

based on the concept of Lands cycle. We propose that LCA1 is

a key enzyme involved in the PC turnover process in yeast.
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